Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641480

RESUMO

STATEMENT OF PROBLEM: Multiple factors can influence the accuracy of intraoral scanners (IOSs). However, the impact of scan extension and starting quadrant on the accuracy of IOSs for fabricating tooth-supported crowns remains uncertain. PURPOSE: The purpose of the present in vitro study was to measure the influence of scan extension (half or complete arch scan) and the starting quadrant (same quadrant or contralateral quadrant of the location of the crown preparation) on the accuracy of four IOSs. MATERIAL AND METHODS: A typodont with a crown preparation on the left first molar was digitized (T710) to obtain a reference scan. Four scanner groups were created: TRIOS 5, PrimeScan, i700, and iTero. Then, 3 subgroups were defined based on the scan extension and starting quadrant: half arch (HA subgroup), complete arch scan starting on the left quadrant (CA-same subgroup), and complete arch scan starting on the right quadrant (CA-contralateral subgroup), (n=15). The reference scan was used as a control to measure the root mean square (RMS) error discrepancies with each experimental scan on the tooth preparation, margin of the tooth preparation, and adjacent tooth areas. Two-way ANOVA and pairwise multiple comparisons were used to analyze trueness (α=.05). The Levene and pairwise comparisons using the Wilcoxon Rank sum tests were used to analyze precision (α=.05). RESULTS: For the tooth preparation analysis, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.002). The iTero and TRIOS5 groups obtained better trueness than the PrimeScan and i700 groups (P<.001). Moreover, half arch scans obtained the best trueness, while the CA-contralateral scans obtained the worst trueness (P<.001). The iTero group showed the worst precision among the IOSs tested. For the margin of the tooth preparation evaluation, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.005). The iTero group obtained best trueness (P<.001), but the worst precision (P<.001) among the IOSs tested. Half arch scans obtained the best trueness and precision values. For the adjacent tooth analysis, trueness and precision differences were found among the groups (P<.001) and subgroups tested (P<.001), with a significant interaction group×subgroup (P=.005). The TRIOS 5 obtained the best trueness and precision. Half arch scans obtained the best accuracy. CONCLUSIONS: Scan extension and the starting quadrant impacted the scanning trueness and precision of the IOSs tested. Additionally, the IOSs showed varying scanning discrepancies depending on the scanning area assessed. Half arch scans presented the highest trueness and precision, and the complete arch scans in which the scan started in the contralateral quadrant of where the crown preparation was obtained the worst trueness and precision.

2.
J Prosthet Dent ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641478

RESUMO

STATEMENT OF PROBLEM: Different digital methods have been described for transferring the maxillary cast into a virtual articulator; however, its accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to compare the accuracy of the maxillary cast transfer into the virtual semi-adjustable articulator by using analog and digital methods. MATERIAL AND METHODS: A maxillary typodont with 5 markers was positioned into a mannequin, which was digitized by using an industrial scanner (ATOS Q) and an extraoral scan of the typodont obtained (T710). Three groups were created based on the technique used to transfer the maxillary cast into the virtual articulator (Panadent PCH Articulator): conventional facebow record (CNV group), digital photograph (P group), and facial scanning (FS group) (n=10). In the CNV group, conventional facebow records (Kois Dentofacial analyzer system) were digitized (T710) and used to mount the maxillary scan into the articulator by aligning it with the reference platform (Kois adjustable platform) (DentalCAD). In the P group, photographs with the reference glasses (Kois Reference Glasses 3.0) were positioned in the mannequin. Each photograph was superimposed with the maxillary scan. Then, the maxillary scan was transferred into the virtual articulator by using the true horizontal plane information of the photograph. In the FS group, facial scans with an extraoral scan body (Kois Scan Body) were positioned in the mannequin by using a facial scanner (Instarisa). The extraoral scan body was digitized by using the same extraoral scanner. The digitized extraoral scan body provided the true horizontal plane information that was used to mount the maxillary scan into the articulator, along with the Kois disposable tray of the scan body. On the reference scan and each specimen, 15 linear measurements between the markers of the maxillary scans and the horizontal plane of the virtual articulator and 3 linear measurements between the maxillary dental midline and articulator midline were calculated. The measurements of the reference scan were used as a control to assess trueness and precision. Trueness was analyzed by using 1-way ANOVA followed by the pairwise comparison Tukey tests (α=.05). Precision was evaluated by using the Levene and pairwise comparisons Wilcoxon Rank sum tests. RESULTS: No significant trueness (P=.996) or precision (P=.430) midline discrepancies were found. Significant posterior right (P<.001), anterior (P=.005), posterior left (P<.001), and overall (P<.001) trueness discrepancies were revealed among the groups. The P group obtained the best posterior right, posterior left, and overall trueness and precision. The P and FS groups demonstrated the best anterior trueness, but no anterior precision discrepancies were found. CONCLUSIONS: The techniques tested affected the accuracy of the maxillary cast transfer into the virtual semi-adjustable articulator. In the majority of the parameters assessed, the photography method tested showed the best trueness and precision values. However, the maxillary cast transfer accuracy ranged from 137 ±44 µm to 453 ±176 µm among the techniques tested.

3.
J Prosthet Dent ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609764

RESUMO

STATEMENT OF PROBLEM: Digital photographs can be used for transferring the maxillary cast into the virtual semi-adjustable articulator; however, its accuracy remains unknown. PURPOSE: The purpose of the present study was to compare the accuracy of the maxillary cast transfer into the virtual semi-adjustable articulator by using an analog and a digital standardized photography technique. MATERIAL AND METHODS: A maxillary cast was digitized (T710) and positioned into a dental mannequin. The dental midline was not coincident with the facial midline and the maxillary occlusal plane was tilted. A reference scan of the assembled mannequin was obtained by using a facial scanner (Instarisa). Two groups were created based on the technique used to transfer the maxillary cast into the articulator (Panadent PCH): conventional facebow record (CNV group) or digital photograph (Photo group) (n=10). In the CNV group, facebow records (Kois Dentofacial analyzer system) were digitized (T710) and used to transfer the maxillary scan into the articulator by aligning it with the reference platform (Kois adjustable platform). In the Photo group, photographs with a reference glasses (Kois Reference Glasses) positioned into the mannequin were acquired. Each photograph was aligned with the maxillary scan. Then, the maxillary scan was transferred into the articulator by using the true horizontal axis information contained in the photograph. On the reference scan and each specimen, 10 linear measurements between the buccal cusps of the maxillary scan and the horizontal plane of the virtual articulator and a linear measurement between the maxillary dental midline and articulator midline were calculated. The measurements of the reference scan were used as a control to compute trueness and precision. Trueness was analyzed by using 1-way ANOVA followed by the pairwise comparison Tukey test (α=.05). Precision was evaluated by using the Levene and Wilcoxon Rank sum tests (α=.05). RESULTS: The overall discrepancy measured in the CNV group was 0.620 ±0.396 mm, while in the Photo group it was 1.282 ±0.118 mm. Significant trueness differences were found in the midline (P=.037), anterior (P=.050), posterior right (P<.001), posterior left (P=.012), and overall discrepancy (P<.001) between the CNV and Photo groups. Significant precision discrepancies were found in the midline (P=.012), posterior right (P<.001), anterior (P<.001), posterior left (P=.002), and overall discrepancy (P<.001) between the CNV and Photo groups. CONCLUSIONS: The facebow record method impacted the accuracy of the maxillary cast transfer. The Photo group obtained better trueness in the midline transfer than the CNV group; however, the CNV group demonstrated better trueness in the anterior, posterior right, posterior left, and overall discrepancy of the maxillary cast transfer compared with the Photo group. Overall, the Photo group obtained better precision than the CNV group.

4.
J Prosthet Dent ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604907

RESUMO

STATEMENT OF PROBLEM: Maxillary and mandibular scans can be articulated in maximum intercuspal position (MIP) by using an artificial intelligence (AI) based program; however, the accuracy of the AI-based program locating the MIP relationship is unknown. PURPOSE: The purpose of the present clinical study was to assess the accuracy of the MIP relationship located by using 4 intraoral scanners (IOSs) and an AI-based program. MATERIAL AND METHODS: Conventional casts of a participant mounted on an articulator in MIP were digitized (T710). Four groups were created based on the IOS used to record a maxillary and mandibular scan of the participant: TRIOS4, iTero, i700, and PrimeScan. Each pair of nonarticulated scans were duplicated 20 times. Three subgroups were created: IOS, AI-articulated, and AI-IOS-corrected subgroups (n=10). In the IOS-subgroup, 10 duplicated scans were articulated in MIP by using a bilateral occlusal record. In the AI-articulated subgroup, the remaining 10 duplicated scans were articulated in MIP by using an AI-based program (BiteFinder). In the AI-IOS-corrected subgroup, the same AI-based program was used to correct the occlusal collisions of the articulated specimens obtained in the IOS-subgroup. A reverse engineering program (Geomagic Wrap) was used to calculate 36 interlandmark measurements on the digitized articulated casts (control) and each articulated specimen. Two-way ANOVA and pairwise multiple comparison Tukey tests were used to analyze trueness (α=.05). The Levene and pairwise multiple comparison Wilcoxon rank tests were used to analyze precision (α=.05). RESULTS: Significant trueness discrepancies among the groups (P<.001) and subgroups (P<.001) were found, with a significant interaction group×subgroup (P<.001). The Levene test showed significant precision discrepancies among the groups (P<.001) and subgroups (P=.005). The TRIOS4 and iTero groups obtained better trueness and lower precision than the i700 and PrimeScan systems. Additionally, the AI-articulated subgroup showed worse trueness and precision than the IOS and AI-IOS-corrected subgroups. The AI-based program improved the MIP trueness of the scans articulated by using the iTero and PrimeScan systems but reduced the MIP trueness of the articulated scans obtained by using the TRIOS4 and i700. CONCLUSIONS: The trueness and precision of the maxillomandibular relationship was impacted by the IOS system and program used to locate the MIP.

5.
J Prosthet Dent ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458860

RESUMO

STATEMENT OF PROBLEM: An artificial-intelligence (AI) based program can be used to articulate scans in maximum intercuspal position (MIP) or correct occlusal collisions of articulated scans at MIP; however, the accuracy of the AI program determining the MIP relationship is unknown. PURPOSE: The purpose of the present clinical study was to assess the influence of intraoral scanner (IOS) (TRIOS 5 or i700) and program (IOS or AI-based program) on the accuracy of the MIP relationship. MATERIAL AND METHODS: Casts of a participant mounted on an articulator were digitized (T710). A maxillary and a mandibular scan of the participant were recorded by using 2 IOSs: TRIOS 5 and i700. The scans were duplicated 15 times. Then, each duplicated pair of scans was articulated in MIP using a bilateral occlusal record. Articulated scans were duplicated and allocated into 2 groups based on the automatic occlusal collisions' correction completed by using the corresponding IOS program: IOS-corrected and IOS-noncorrected group. Three subgroups were created based on the AI-based program (Bite Finder) method: AI-articulated, AI-IOS-corrected, and AI-IOS-noncorrected (n=15). In the AI-articulated subgroup, the nonarticulated scans were imported and articulated. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-corrected group were imported, and the occlusal collisions were corrected. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-noncorrected subgroup were imported, and the occlusal collisions were corrected. A total of 36 interlandmark measurements were calculated on each articulated scan (Geomagic Wrap). The distances computed on the reference scan were used as a reference to calculate the discrepancies with each experimental scan. Nonparametric 2-way ANOVA and pairwise multiple comparison Dwass-Steel-Critchlow-Fligner tests were used to analyze trueness. The general linear model procedure was used to analyze precision (α=.05). RESULTS: Significant maxillomandibular trueness (P=.003) and precision (P<.001) differences were found among the subgroups. The IOS-corrected and IOS-noncorrected (P<.001) and AI-articulated and IOS-noncorrected subgroups (P=.011) were significantly different from each other. The IOS-corrected and AI-articulated subgroups obtained significantly better maxillomandibular trueness and precision than the IOS-noncorrected subgroups. CONCLUSIONS: The IOSs tested obtained similar MIP accuracy; however, the program used to articulate or correct occlusal collusions impacted the accuracy of the MIP relationship.

6.
J Prosthet Dent ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38443245

RESUMO

STATEMENT OF PROBLEM: Different techniques have been proposed for increasing the accuracy of complete arch implant scans obtained by using intraoral scanners (IOSs), including a calibrated metal framework (IOSFix); however, its accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to compare the accuracy of complete arch scans obtained with connecting and non-connecting the implant scan bodies (ISBs) recorded using intraoral scanners (IOSs), a laboratory scanner (LBS), and photogrammetry (PG). MATERIAL AND METHODS: A cast with 6 implant abutment analogs was obtained. Six groups were created: TRIOS 4, i700, iTero, CS3800, LBS, and PG groups. The IOSs and LBS groups were divided into 3 subgroups: nonconnected ISBs (ISB), splinted ISBs (SSB), and calibrated framework (CF), (n=15). For the ISB subgroups, an ISB was positioned on each implant abutment analog. For the SSB subgroups, a printed framework was used to connect the ISBs. For the CF subgroups, a calibrated framework (IOSFix) was used to connect the ISBs. For the PG group, scans were captured using a PG (PIC Camera). Implant positions of the reference cast were measured using a coordinate measurement machine, and Euclidean distances were used as a reference to calculate the discrepancies using the same distances obtained on each experimental scan. Wilcoxon squares 2-way ANOVA and pairwise multiple comparisons were used to analyze trueness (α=.05). The Levene test was used to analyze precision (α=.05). RESULTS: Linear and angular discrepancies were found among the groups (P<.001) and subgroups (P<.001). Linear (P=.008) and angular (P<.001) precision differences were found among the subgroups. CONCLUSIONS: The digitizing method and technique impacted the trueness and precision of the implant scans. The photogrammetry and calibrated framework groups obtained the best accuracy. Except for TRIOS 4, the calibrated framework method improved the accuracy of the scans obtained by using the IOSs tested.

7.
J Dent ; 142: 104854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246309

RESUMO

PURPOSE: To measure the impact of the scanning distance on the accuracy of complete-arch implant scans acquired by using a photogrammetry (PG) system. MATERIAL AND METHODS: An edentulous cast with 6 implant abutment analogs was obtained. A brand new implant scan body was positioned on each implant abutment and digitized using an extraoral scanner (T710; Medit) and the reference file was obtained. Three groups were created based on the scanning distance used to acquire complete-arch implant scans by using a PG (PIC System; PIC Dental): 20 (20 group), 30 (30 group), and 35 cm (35 group). An optical marker (PIC Transfer, HC MUA Metal; PIC Dental) was placed on each implant abutment and a total of thirty scans per group were acquired. Euclidean linear and angular measurements were obtained on the reference file was obtained and used to compare the discrepancies with the same measurements obtained on each experimental scan. One-way ANOVA and Tukey tests were used to analyze trueness. The Levene test was used to analyze the precision values (α = 0.05). RESULTS: Significant linear (P < .001) and angular trueness (P < .001) discrepancies were found among the groups. For linear trueness, Tukey test showed that the 20 and 30 groups (P < .001) and 30 and 35 groups were different (P < .001). For angular trueness, the Tukey test revealed that 20 and 30 groups (P = .003), 20 and 35 (P < .001), and 30 and 35 groups were different (P < .001) The Levene test showed no significant linear precision (P = .197) and angular discrepancies (P = .229) among the groups. CONCLUSIONS: The scanning distance influenced the trueness of complete-arch implant scans obtained with the PG method tested. The maximum linear trueness mean discrepancy among the groups tested was 10 µm and the maximum angular trueness mean discrepancy among the groups tested was 0.02 .


Assuntos
Implantes Dentários , Boca Edêntula , Humanos , Técnica de Moldagem Odontológica , Modelos Dentários , Desenho Assistido por Computador , Imageamento Tridimensional
8.
J Prosthet Dent ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38267350

RESUMO

STATEMENT OF PROBLEM: Photogrammetry has been reported to be a reliable digital alternative for recording implant positions; however, the factors that may impact the accuracy of photogrammetry techniques remain unknown. PURPOSE: The purpose of this in vitro study was to assess the influence of the implant reference on the accuracy of complete arch implant scans acquired by using a photogrammetry system. MATERIAL AND METHODS: An edentulous cast with 6 implant abutment analogs (MultiUnit Abutment Plus Replica) was obtained and digitized by using a laboratory scanner (T710; Medit). A photogrammetry system (PIC System) was selected to obtain complete arch implant scans. An optical marker (PIC Transfer, HC MUA Metal; PIC Dental) was positioned on each implant abutment of the reference cast. Each optical marker code and position was determined in the photogrammetry software program. Three groups were created based on the implant reference selected before acquiring the photogrammetry scans: right first molar (IPR-3 group), left canine (IPR-11 group), and left first molar (IPR-14 group) (n=30). Euclidean linear and angular measurements were obtained on the digitized reference cast and used to compare the discrepancies with the same measurements obtained on each experimental scan. One-way ANOVA and the Tukey tests were used to analyze the trueness data. The Levene test was used to analyze the precision values (α=.05 for all tests). RESULTS: One-way ANOVA revealed significant linear (P=.003) and angular (P=.009) trueness differences among the groups tested. Additionally, the Tukey test showed that the IPR-11 and IPR-14 groups had significantly different linear (P<.001) and angular trueness (P<.001). The Levene test showed no significant precision linear (P=.197) and angular (P=.235) discrepancies among the groups tested. The IPR-3 group obtained the highest trueness (P<.001) and precision (P<.001) values among the groups tested. CONCLUSIONS: Implant reference impacted the accuracy of complete arch implant scans obtained by using the photogrammetry system tested. However, a trueness ±precision linear discrepancy of 6 ±3 µm and an angular discrepancy of 0.01 ±0.01 degrees were measured among the groups tested; therefore, the impact of the discrepancy measured should not be clinically significant.

9.
J Prosthodont ; 33(2): 141-148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634341

RESUMO

PURPOSE: To assess the influence of print orientation on the surface roughness of implant-supported interim crowns manufactured by using digital light processing (DLP) 3D printing procedures. MATERIALS AND METHODS: An implant-supported maxillary right premolar full-contour crown was obtained. The interim restoration design was used to fabricate 30 specimens with 3 print orientations (0, 45, and 90 degrees) using an interim resin material (GC Temp PRINT) and a DLP printer (Asiga MAX UV) (n = 10). The specimens were manufactured, and each was cemented to an implant abutment with autopolymerizing composite resin cement (Multilink Hybrid Abutment). Surface roughness was assessed on the buccal surface of the premolar specimen by using an optical measurement system (InfiniteFocusG5 plus). The data were analyzed with a Shapiro-Wilk test, resulting in a normal distribution. One-way ANOVA and the Tukey HSD tests were selected (α = 0.05). RESULTS: Statistically significant discrepancies were found in the surface roughness mean values among the groups tested (p < 0.001). The lowest mean ± standard deviation surface roughness was found with the 90-degree group (1.2 ± 0.36 µm), followed by the 0-degree orientation (2.23 ± 0.18 µm) and the 45-degree group (3.18 ± 0.31 µm). CONCLUSIONS: Print orientation parameter significantly impacted the surface roughness of the implant-supported interim crowns manufactured by using the additive procedures tested.


Assuntos
Implantes Dentários , Desenho Assistido por Computador , Cimentos Dentários , Coroas , Cimentos de Ionômeros de Vidro , Teste de Materiais
10.
J Prosthodont ; 33(1): 77-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704924

RESUMO

PURPOSE: To measure the wear at the implant interface between the Grade 4 titanium (Ti) of the implant and frameworks fabricated using two additively manufactured alloys (Ti alloy and cobalt-chromium [Co-Cr]) pre- and post-artificial aging. MATERIAL AND METHODS: Three-unit frameworks supported by two implants were additively manufactured (Atlantis; Dentsply Sirona) using Ti and Co-Cr dental alloys. Two implants (OsseoSpeed EV, Astra Tech; Dentsply Sirona) were torqued on each non-engaging framework. The assembled implant-frameworks were secured into polyurethane foam blocks. Groups were created based on the material and surface assessed: framework (Ti-framework and Co-Cr-framework groups) and implant (Ti-implant group). Two subgroups were created depending on the location: premolar (PM) and molar (M). Computed tomography images were obtained pre- (as manufactured) and post-simulated mastication procedures. The pre- and post-simulated mastication files of each specimen were aligned using the best-fit algorithm using a metrology program. Wear was measured by calculating the volumetric discrepancies at the implant interface on 64 measurement points per area analyzed. Three-way ANOVA and Tukey tests were used to analyze the data (α = 0.05). RESULTS: The mean volumetric discrepancy values ranged from 0.8 to 3.1 µm among all the subgroups tested. The group (framework vs. implant) (p < 0.001) and tooth location (p < 0.001) were significant factors of the mean volumetric discrepancy values obtained. The framework group presented with significantly lower volumetric discrepancy mean values (1 µm) compared with the implant group (3 µm), whereas the premolar area obtained significantly lower mean volumetric discrepancy values (1.9 µm) compared with the molar location (2.3 µm). CONCLUSIONS: Volumetric discrepancies were found at the implant-framework interface tested between the pre- and post-artificial aging measurements ranging from 1 to 3 µm after 1,200,000 cyclic loading that simulated approximately 12 months of function.


Assuntos
Implantes Dentários , Polimetil Metacrilato , Titânio , Cobalto , Cromo , Prótese Dentária Fixada por Implante , Ligas de Cromo , Desenho Assistido por Computador
11.
J Esthet Restor Dent ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882509

RESUMO

PURPOSE: The purpose of the present clinical study was to compare the Ricketts and Steiner cephalometric analysis obtained by two experienced orthodontists and artificial intelligence (AI)-based software program and measure the orthodontist variability. MATERIALS AND METHODS: A total of 50 lateral cephalometric radiographs from 50 patients were obtained. Two groups were created depending on the operator performing the cephalometric analysis: orthodontists (Orthod group) and an AI software program (AI group). In the Orthod group, two independent experienced orthodontists performed the measurements by performing a manual identification of the cephalometric landmarks and a software program (NemoCeph; Nemotec) to calculate the measurements. In the AI group, an AI software program (CephX; ORCA Dental AI) was selected for both the automatic landmark identification and cephalometric measurements. The Ricketts and Steiner cephalometric analyses were assessed in both groups including a total of 24 measurements. The Shapiro-Wilk test showed that the data was normally distributed. The t-test was used to analyze the data (α = 0.05). RESULTS: The t-test analysis showed significant measurement discrepancies between the Orthod and AI group in seven of the 24 cephalometric parameters tested, namely the corpus length (p = 0.003), mandibular arc (p < 0.001), lower face height (p = 0.005), overjet (p = 0.019), and overbite (p = 0.022) in the Ricketts cephalometric analysis and occlusal to SN (p = 0.002) and GoGn-SN (p < 0.001) in the Steiner cephalometric analysis. The intraclass correlation coefficient (ICC) between both orthodontists of the Orthod group for each cephalometric measurement was calculated. CONCLUSIONS: Significant discrepancies were found in seven of the 24 cephalometric measurements tested between the orthodontists and the AI-based program assessed. The intra-operator reliability analysis showed reproducible measurements between both orthodontists, except for the corpus length measurement. CLINICAL SIGNIFICANCE: The artificial intelligence software program tested has the potential to automatically obtain cephalometric analysis using lateral cephalometric radiographs; however, additional studies are needed to further evaluate the accuracy of this AI-based system.

12.
J Prosthet Dent ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37778941

RESUMO

STATEMENT OF PROBLEM: The accuracy of printed implant surgical guides can be affected by different factors that negatively impact the planned implant position. How print orientation, storage time, and conditions influence manufacturing accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to evaluate the influence of print orientation, storage conditions, and storage time on the intaglio surface accuracy of implant surgical guides manufactured by using a stereolithography (SLA) printer. MATERIAL AND METHODS: A tooth-supported maxillary implant surgical guide design (control file) was used to fabricate the specimens (N=40, n=10). Four groups were created based on the print orientation used: 0 (Group 0), 45 (Group 45), 70 (Group 70), and 90 degrees (Group 90). The specimens were fabricated using an SLA printer (Form 3B+) and a biocompatible dental resin (Surgical Guide Resin V1) following the manufacturer's recommended protocol. Each group was divided into 2 subgroups based on the storage conditions: light (L subgroup) and dark (D subgroup) settings. Each specimen was digitized by using a desktop scanner (Medit T710) at days 0, 1, 7, and 14. The control file and each digitized specimen were superimposed by using the best-fit technique with a metrology program (Geomagic Control X). The root mean square (RMS) error was used to calculate the discrepancies between the control files and specimen files. Three-way ANOVA and pairwise comparison Tukey tests were used to analyze trueness. The Levene test was used to assess precision (α=.05). RESULTS: Significant trueness discrepancies were found among the groups tested (P<.001), but no significant differences were found among the subgroups (P=.100) and the storage times analyzed (P=.609). Additionally, the Tukey test showed significant RMS error mean value discrepancies between Group 0 and Group 45 (P<.001), Group 0 and Group 90 (P<.001), Group 45 and Group 70 (P<.001), and Group 70 and Group 90 (P<.001). The Levene test revealed significant SD discrepancies among the groups tested (P<.05). CONCLUSIONS: The trueness and precision of the intaglio surface of the implant surgical guides manufactured by using the printer and material tested were affected by the print orientation. However, storage conditions over a 14-day period did not impact the intaglio accuracy of the specimens.

13.
J Prosthet Dent ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37798183

RESUMO

STATEMENT OF PROBLEM: Artificial intelligence (AI) models have been developed for different applications, including the automatic design of occlusal devices; however, the design discrepancies of an experienced dental laboratory technician and these AI automatic programs remain unknown. PURPOSE: The purpose of this in vitro study was to compare the overall, intaglio, and occlusal surface discrepancies of the occlusal device designs completed by an experienced dental laboratory technician and two AI automatic design programs. MATERIAL AND METHODS: Virtually articulated maxillary and mandibular diagnostic casts were obtained in a standard tessellation language (STL) file format. Three groups were created depending on the operator or program used to design the occlusal devices: an experienced dental laboratory technician (control group) and two AI programs, namely Medit Splints from Medit (Medit group) and Automate from 3Shape A/S (3Shape group) (n=10). To minimize the discrepancies in the parameter designs among the groups tested, the same printing material and design parameters were selected. In the control group, the dental laboratory technician imported the articulated scans into a dental design program (DentalCAD) and designed a maxillary occlusal device. The occlusal device designs were exported in STL format. In the Medit and 3Shape groups, the diagnostic casts were imported into the respective AI programs. The AI programs automatically designed the occlusal device without any further operator intervention. The occlusal device designs were exported in STL format. Among the 10 occlusal designs of the control group, a random design (shuffle deck of cards) was used as a reference file to calculate the overall, intaglio, and occlusal discrepancies in the specimens of the AI groups by using a program (Medit Design). The root mean square (RMS) error was calculated. Kruskal-Wallis, and post hoc Dwass-Steel-Critchlow-Fligner pairwise comparison tests were used to analyze the trueness of the data. The Levene test was used to assess the precision data (α=.05). RESULTS: Significant overall (P<.001), intaglio (P<.001), and occlusal RMS median value (P<.001) discrepancies were found among the groups. Significant overall RMS median discrepancies were observed between the control and the Medit groups (P<.001) and the control and 3Shape groups (P<.001). Additionally, significant intaglio RMS median discrepancies were found between the control and the Medit groups (P<.001), the Medit and 3Shape groups (P<.001), and the control and 3Shape groups (P=.008). Lastly, significant occlusal RMS median discrepancies were found between the control and the 3Shape groups (P<.001) and the Medit and 3Shape groups (P<.001). The AI-based software programs tested were able to automatically design occlusal devices with less than a 100-µm trueness discrepancy compared with the dental laboratory technician. The Levene test revealed significant overall (P<.001), intaglio (P<.001), and occlusal (P<.001) precision among the groups tested. CONCLUSIONS: The use of a dental laboratory technique influenced the overall, intaglio, and occlusal trueness of the occlusal device designs obtained. No differences were observed in the precision of occlusal device designs acquired among the groups tested.

14.
J Dent ; 138: 104718, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37775027

RESUMO

OBJECTIVE: To review the factors that influence the accuracy of the maxillomandibular relationship at maximum intercuspation (MIP) acquired by using intraoral scanners (IOSs). MATERIAL AND METHODS: A systematic search was performed using five databases: MEDLINE/PubMed, Cochrane, Embase, World of Science, and Scopus. A manual search was also completed. Studies assessing the factors that influence the MIP acquired by using IOSs were included and organized based on the analyzed factor. Studies were evaluated by applying the Joanna Briggs Institute Critical Appraisal Checklist. RESULTS: Twenty-nine articles were included. Seven factors have been identified: IOS system, scan extension, edentulous areas, number, location, and extension of occlusal records, occlusal force, tooth mobility, and alignment methods. Nine studies evaluated the influence of IOS system. Four studies assessed the influence of the extension of the arch scan. Three studies evaluated the effect of edentulous spaces. Four studies agreed on the impact of the number, location, and extension of the occlusal records on the MIP accuracy. One study assessed the influence of the occlusal force, showing a smaller average interocclusal space with increased occlusal force. One study evaluated the influence of tooth mobility. Seven studies analyzed the influence of the alignment method on the MIP accuracy. CONCLUSIONS: Most of the studies reported no difference on the MIP accuracy between half- and complete-arch scans. Areas with 2 or more missing teeth reduce the MIP accuracy. A bilateral and frontal record including 2 teeth or a bilateral posterior occlusal including at least 4-teeth is indicated for maximizing the MIP accuracy. CLINICAL IMPLICATIONS: When a complete-arch intraoral scans is obtained, a bilateral and frontal record including 2 teeth or a bilateral posterior occlusal record including at least 4-teeth is recommended for maximizing the accuracy of the MIP. When a half-arch intraoral scan is acquired, a posterior occlusal record including at least 4-teeth is indicated for optimizing the accuracy of the MIP.


Assuntos
Boca Edêntula , Mobilidade Dentária , Humanos , Imageamento Tridimensional , Técnica de Moldagem Odontológica , Modelos Dentários , Arco Dental/diagnóstico por imagem , Desenho Assistido por Computador
15.
J Dent ; 137: 104667, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595865

RESUMO

OBJECTIVES: To evaluate the influence of the dental arch and cutting-off and rescanning procedures on the accuracy of complete-arch implant scans in partially edentulous arches. MATERIAL AND METHODS: A maxillary and a mandibular partially edentulous typodont with implant abutment analogs placed in the right and left first molar and right central incisor sites were digitized to create reference models by using an industrial optical scanner (7 Series Desktop Scanner; Dentalwings). Two experimental groups were scanned using an intraoral scanner (IOS) (TRIOS 4; 3Shape A/S): the Maxillary group (Mx) and the Mandibular group (Mb). Four subgroups were generated depending on the number of rescanned mesh holes: No holes (Mx-G0, Mb-G0), 1 hole (Mx-G1, Mb-G1), 2 holes (Mx-G2, Mb-G2) and 3 holes (Mx-G3, Mb-G3). A 3-dimensional metrology software (Geomagic Control X; 3D Systems) was used to measure the difference between the reference and the experimental scans computing the root mean square (RMS) error calculation. Two-way ANOVA and a post-hoc Tukey test were used to analyze the trueness data (α=0.05). Levene test was used to evaluate the prevision (α=0.05). RESULTS: The Mx group obtained a trueness mean value of 54 ± 17 µm and a mean precision value of 54 ± 17 µm, while the Mb group presented a trueness mean value of 67 ± 23 µm and a mean precision value of 66 ± 22 µm. The Mx group demonstrated significantly better trueness than the Mb group (P<.001). The G0 and G1 subgroups had the highest trueness values among the subgroups tested. No significant difference was observed between G0 and G1, G1 and G2, and G2 and G3 subgroups in trueness and precision. However, the G0 had significantly better trueness and precision values compared to G2 and G3 subgroups. In addition, the G1 had significantly better trueness values than the G3 subgroup. However, the Levene test revealed no difference in the precision mean values among the subgroups tested. CONCLUSIONS: Implant scanning trueness was affected by the dental arch and the number of rescanned mesh holes using the IOS tested. A higher number of rescanned mesh holes decreased the scanning trueness. The stitching algorithm of the IOS software tested after the mesh hole scan demonstrated a significant error, especially when multiples mesh holes are involved in the same arch. CLINICAL SIGNIFICANCE: Given that cutting-off and rescanning techniques can reduce trueness, clinicians should consider whether these techniques are necessary in complete digital workflows. This is particularly important when fabricating multiple single implant-supported restorations in the same arch.


Assuntos
Arco Dental , Boca Edêntula , Humanos , Arco Dental/diagnóstico por imagem , Telas Cirúrgicas , Algoritmos , Análise de Variância
16.
J Prosthodont ; 32(S2): 208-224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37591510

RESUMO

PURPOSE: To evaluate accuracy, scanning time, and patient satisfaction of photogrammetry (PG) systems for recording the 3D position of dental implants. MATERIAL AND METHODS: A literature search was completed in five databases: PubMed/Medline, Scopus, Embase, World of Science, and Cochrane. A manual search was also conducted. Studies reporting the use of commercially available PG systems were included. Two investigators evaluated the studies independently by applying the Joanna Briggs Institute critical appraisal. A third examiner was consulted to resolve any lack of consensus. RESULTS: A total of 14 articles were included: 3 in vivo, 6 in vitro, and 6 case report manuscripts. One clinical study evaluated trueness, another one tested precision, and the third one assessed impression time and patient and operator satisfaction. All the in vitro studies evaluated the trueness and precision of a PG system. Additionally, all the reviewed studies investigated completely edentulous conditions with multiple implants. The number of placed implants per arch among the reviewed clinical studies varied from 4 to 8 implants, while the number of implants placed on the reference casts included 4, 5, 6, or 8 implants. Not all the studies compared the accuracy of PG systems with conventional impression methods, using intraoral scanners as additional experimental groups. For the PIC system, trueness ranged from 10 to 49 µm and precision ranged from 5 to 65 µm. For the iCam4D system, trueness ranged from 24 to 77 µm and the precision value ranged from 2 to 203 µm. CONCLUSIONS: PG systems may provide a reliable alternative for acquiring the 3D position of dental implants. However, this conclusion should be interpreted carefully, as one study reported a mean precision value of one PG system higher than the clinically acceptable discrepancy. Lower scanning time and higher patient and operator satisfaction have been reported when compared with conventional techniques. Further studies are needed to increase the evidence regarding the accuracy, scanning time, and patient and operator satisfaction of the commercially available PG systems.


Assuntos
Implantes Dentários , Imageamento Tridimensional , Humanos , Desenho Assistido por Computador , Técnica de Moldagem Odontológica , Modelos Dentários , Satisfação do Paciente , Fotogrametria
17.
J Prosthodont ; 32(S2): 125-134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37591814

RESUMO

PURPOSE: To assess the influence of interdental spaces and scanning the palate on the accuracy of maxillary scans acquired using three intraoral scanners (IOSs). MATERIALS AND METHODS: A virtual completely dentate maxillary cast without interdental spaces was obtained and modified to create 1, 2, and 3 mm of interdental spacing between the anterior teeth. These three files (reference standard tessellation language files) were used to print three reference casts. The reference casts were scanned using three IOSs: TRIOS4, iTero Element 5D, and Aoralscan2. Three groups were created based on the interdental spaces: 0, 1, 2, and 3 mm (n = 10). The groups were subdivided into two subgroups: no palate (NP subgroup) and palate (P subgroup). The reference STL files were used to measure the discrepancy with the experimental scans by calculating the root mean square (RMS) error. Three-way analysis of variance (ANOVA) and post hoc Tukey pairwise comparison tests were used to analyze trueness. The Levene test was used to analyze precision (α = 0.05). RESULTS: Trueness ranged from 91 to 139 µm and precision ranged from 5 to 23 µm among the subgroups tested. A significant correlation was found between IOS*group (p<0.001) and IOS*subgroup ( p<0.001). Tukey test showed significant trueness differences among the interdental spaces tested (p<0.001). The 1- and 2-mm groups obtained better trueness than the 0- and 3-mm groups (p<0.001). An 11 µm mean trueness discrepancy was measured among the different interdental space groups tested. The P subgroups demonstrated significantly higher trueness when compared to the NP subgroups (p<0.001). The discrepancy between the maxillary scans with and without the palate was 4 µm. Significant precision discrepancies were found (p = 0.008), with the iTero group showing the lowest precision. CONCLUSION: Interdental spaces and incorporation of the palate on maxillary intraoral scans influenced trueness and precision of the three IOSs tested. However, the scanning discrepancy measured may be of no clinical relevance.


Assuntos
Desenho Assistido por Computador , Imageamento Tridimensional , Técnica de Moldagem Odontológica , Modelos Dentários , Palato/diagnóstico por imagem
18.
J Telemed Telecare ; : 1357633X231174057, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37487203

RESUMO

OBJECTIVES: Tele-orthodontics is an important medium to use for diagnosis and treatment planning and to refer patients for specific treatment when deemed necessary. The effectiveness of the Tele-orthodontics Education Model serves to improve resident's knowledge, confidence, and skills in delivering tele-orthodontic patient care. The purpose of this educational single-arm pre-test-post-test interventional study was to assess and educate orthodontic residents (6 year-one, and 6 year-two) to appropriately use tele-orthodontics. METHODS: The Tele-orthodontics Education Model utilizes three learning modules, a questionnaire before and after the training to assess participant knowledge, confidence and skills levels, three online multiple-choice questionnaires, three explanatory videos and an in-person simulation session. The Blackboard Learning Management System (virtual learning platform) facilitates access to the various modules of the program. Within each learning module, a participant's knowledge level was determined by utilizing five multiple-choice questions before and after each module. The various modules were introduced to the participants and then evaluated by reviewing the participant's responses to the multiple-choice questions. RESULTS: Twelve orthodontic residents completed the model in one session. Everyone fully completed the questionnaire. Post-test results showed higher mean scores for all questions addresses knowledge, the mean confidence, and skills score for post-test showed no change when compared to pre-test. CONCLUSIONS: This education model was effective in improving basic knowledge in tele-orthodontics among first, and second-year orthodontic residents. We hypothesize that the residents are more informed and prepared for future tele-orthodontic practices.

19.
J Prosthet Dent ; 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37365066

RESUMO

STATEMENT OF PROBLEM: Occlusal collisions of articulated intraoral digital scans can be corrected by intraoral scanners (IOSs) or dental design software programs. However, the influence of these corrections on the accuracy of maxillomandibular relationship is unclear. PURPOSE: The purpose of this clinical investigation was to measure the effect of occlusal collision corrections completed by the IOSs or dental design software programs on the trueness and precision of maxillomandibular relationship. MATERIAL AND METHODS: Casts of a participant mounted on an articulator were digitized (T710). The experimental scans were obtained by using 2 IOSs: TRIOS4 and i700. The intraoral digital scans of the maxillary and mandibular arches were obtained and duplicated 15 times. For each duplicated pair of scans, a bilateral virtual occlusal record was acquired. Articulated specimens were duplicated and assigned into 2 groups: IOS-not corrected and IOS corrected (n=15). In the IOS-not corrected groups, the IOS software program postprocessed the scans maintaining the occlusal collisions, while in the IOS-corrected groups, the IOS software program eliminated the occlusal collisions. All articulated specimens were imported into a computer-aided design (CAD) program (DentalCAD). Three subgroups were developed based on the CAD correction: CAD-no change, trimming, or opening the vertical dimension. Thirty-six interlandmark distances were measured on the reference and each experimental scan to compute discrepancies by using a software program (Geomagic Wrap). Root mean square (RMS) was selected to compute the cast modifications performed in the trimming subgroups. Trueness was examined using 2-way ANOVA and pairwise comparison Tukey tests (α=.05). Precision was evaluated with the Levene test (α=.05). RESULTS: The IOS (P<.001), the program (P<.001), and their interaction (P<.001) impacted the trueness of the maxillomandibular relationship. The i700 obtained higher trueness than the TRIOS4 (P<.001). The IOS-not corrected-CAD-no-changes and IOS-not-corrected-trimming subgroups obtained the lowest trueness (P<.001), while the IOS-corrected-CAD-no-changes, IOS-corrected-trimming, and IOS-corrected-opening subgroups showed the highest trueness (P<.001). No significant differences in precision were found (P<.001). Furthermore, significant RMS differences were found (P<.001), with a significant interaction between Group×Subgroup (P<.001). The IOS-not corrected-trimmed subgroups obtained a significantly higher RMS error discrepancy than IOS-corrected-trimmed subgroups (P<.001). The Levene test showed a significant discrepancy in the RMS precision among IOSs across subgroups (P<.001). CONCLUSIONS: The trueness of the maxillomandibular relationship was influenced by the scanner and program used to correct occlusal collisions. Better trueness was obtained when the occlusal collisions were adjusted by the IOS program compared with the CAD program. Precision was not significantly influenced by the occlusal collision correction method. CAD corrections did not improve the results of the IOS software. Additionally, the trimming option caused volumetric changes on the occlusal surfaces of intraoral scans.

20.
J Prosthet Dent ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37246096

RESUMO

STATEMENT OF PROBLEM: Stereolithography (SLA) procedures can be chosen for manufacturing definitive crowns; however, how the print orientation impacts the trueness and precision of the intaglio surface of the printed definitive restorations is unclear. PURPOSE: The purpose of this in vitro investigation was to calculate the manufacturing accuracy of the intaglio surface of SLA definitive resin-ceramic crowns fabricated at varying print orientations (0, 45, 75, or 90 degrees). MATERIAL AND METHODS: The standard tessellation language (STL) file of an anatomic contour molar crown was obtained and used to fabricate all the crowns by using a definitive resin-ceramic material (Permanent Crown) and an SLA printer (Form 3B+). Four groups were developed depending on the print orientation selected to manufacture the crowns: 0-, 45-, 70-, and 90-degree print orientation (n=30). Each crown specimen was digitized without the use of scanning powder by using a desktop scanner (T710). The crown design file was determined as the reference (control) group and used to calculate the fabricating trueness and precision of the intaglio surface of the specimens using the root mean square (RMS) error computation. Trueness data were examined by using 1-way ANOVA and post hoc pairwise multiple comparison Tukey tests, while precision data were analyzed using the Levene test (α=.05). RESULTS: The mean ±standard deviation RMS error discrepancies ranged from 37 ±3 µm to 113 ±11 µm. One-way ANOVA exposed significant trueness (P<.001) differences among the groups considered in this study. Furthermore, all the print orientation groups tested were different from each other (P<.001). The 0-degree group presented the best trueness value (37 µm), while the 90-degree group obtained the worst trueness value (113 µm). The Levene test exposed significant precision differences among the groups assessed (P<.001). The 0-degree group had a significantly lower standard deviation (higher precision) (3 µm) than the other groups, with no difference among the other groups tested (P>.05). CONCLUSIONS: The fabricating trueness and precision of the intaglio surface of the SLA resin-ceramic crowns was impacted by the varying print orientations assessed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...